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Abstract

The extent to which the American public is politically polarized is of great interest
in the lay and academic communities. To study opinion polarization, political scien-
tists and public opinion researchers examine the distribution of respondents on survey
items, using visual comparison of histograms, and/or measures such as variances and
bimodality coefficients. We prove these measures fail to align with the conceptual-
ization of polarization put forth in the literature. To remedy this situation we spec-
ify several properties a measure of polarization consistent with this conceptualization
should possess: in particular, it should increase as a distribution spreads away from a
center toward the poles and/or as clustering below or above this center increases. We
then propose a p-Wasserstein bipolarization index that satisfies these properties and
which measures the distance between the distribution of an item and a most polarized
distribution with all mass concentrated on the lower and upper endpoints of the scale,
using it to examine bipolarization in attitudes toward governmental COVID-19 vaccine
mandates across 11 countries: the US and UK are most polarized, China, France, and
India the least polarized, with Spain, Colombia, Italy, Brazil, Australia and Canada
occupying an intermediate position.
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1 Introduction

Contemporary media coverage of the American political scene depicts a public sharply di-

vided by different views into opposing camps whose members distrust and dislike those

outside their cluster.

Political scientists have offered a more nuanced account. First, they distinguish between

political elites and the public, widely agreeing that “elite polarization”, i.e., ideological ho-

mogeneity among party representatives and ideological dissimilarity between representatives

of different parties, has steadily increased since the 1970s (Poole and Rosenthal 2011). At

the mass level, there is also a consensus that “partisan sorting”, whereby individuals who

self-identify as liberal (conservative) are likely to identify as Democrats (Republicans), has

increased (Levendusky 2009; Fiorina and Abrams 2008). And there is also agreement that

“affective polarization”, whereby members or supporters of each party view those of the

other party negatively, has increased. (Druckman and Levy 2022; Iyengar et al. 2019; Simas,

Clifford, and Kirkland 2020).

Another strand of literature is concerned with “ideological polarization”, the dissimi-

larity between members of the public on policy issues. Two notions have been espoused

(Lelkes 2016). “Ideological consistency” refers to the extent to which persons espouse liberal

or conservative opinions on multiple issues, whereas “ideological divergence” refers to the

distribution of public opinion on given issues, with clustering of respondents at opposing

extremes of a univariate scale indicative of polarization on that issue.

Abramowitz and Saunders (2008) equate polarization with ideological consistency (align-

ment). Using opinion items from the National Election Study (NES) they argue that consis-

tency increased over the period 1982-2004, as evidenced by both the proportion of respon-
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dents giving consistently liberal or conservative responses to the items and the correlation

of responses to different items. Similarly, the Pew Research Center (2014) reports that the

percentage of persons who express ideologically consistent opinions increased from 1994-

2014. However, using items from the 1972-2004 NES, Baldassarri and Gelman (2008) find

little evidence of increased alignment. Similarly, using items from the General Social Survey

(GSS) and the NES, DiMaggio, Evans, and Bryson (1996) find little evidence of increased

“ideological constraint” in their analysis spanning 1972-1994. But a more recent analysis

using NES items (Kozlowski and Murphy 2021) points to an increase in correlations among

items over from 2004-2016. And in the Canadian context, Merkley (2022) finds that the

average correlation between eight issue items from the Canadian Election Studies increased

moderately from 1993-2019.

There is widespread agreement that ideological divergence is maximally manifested when

individuals are concentrated in two clusters at opposite ends of a univariate ordinal or

bounded metric scale (Bauer 2019), suggesting ideological divergence should be measured by

comparing the observed distribution of opinion to this exemplar distribution. But researchers

have taken a more elliptical approach: using visualization (Fiorina and Levendusky 2006;

Fiorina and Abrams 2008; Koudenburg, Kiers, and Kashima 2021) and/or ad-hoc measures

such as the sample variance and bimodality coefficients (DiMaggio, Evans, and Bryson 1996;

Strijbis, Helmer, and De Wilde 2020; Melki and Pickering 2014; Lelkes 2016; Merkley 2022)

that appear on the face of it to capture important features of the exemplar, they ask instead

whether there is a temporal trend in these measures. For example, Fiorina and Abrams

(2008) display figures of distributions intended to help readers visualize polarized vs. non-

polarized distributions and they compare frequency distributions of five NES seven point

ordinal opinion items in 1984 and 2004: for four of these, the percentage of respondents in
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the first, seventh and “central” categories appears similar at the two time points, indicating

to them no change in polarization over this period. But they do not attempt to say whether

or not any of the distributions exhibit polarization, stating that whether or not opinions are

polarized at a particular time point “is generally a matter of judgement” (p.566). DiMaggio,

Evans, and Bryson (1996) argue that increasing the spread and bimodality of a distribution

increases ideological divergence. But they do not attempt to formalize and connect these

concepts to changes in polarization, simply operationalizing spread by variance, bimodality

by kurtosis; Mouw and Sobel (2001) point out that kurtosis does not measure bimodality.

In their empirical work, DiMaggio et al. find no evidence (with the exception of an item

measuring opinions about abortion) that attitudes have polarized. Hill and Tausanovitch

(2015) use 67 NES policy items collected in different years between 1956 and 2012, reporting

no increase in spread as measured by the variance of estimated ideal points for each re-

spondent. Using NES items from 1972-2012 and Sarle’s sample bimodality coefficent, Lelkes

(2016) finds no evidence of increasing polarization, and using NES items from 1972-2016,

Fiorina (2017) comes to the same conclusion.

Economists have also considered polarization. Here the aforementioned disconnect be-

tween measurement and conceptualization is bridged through an axiomatic approach in

which intuitions about polarization are formalized, and measures conforming to the axioms

constructed. Two strands of literature predominate (Esteban and Ray 2012). The first

(Esteban and Ray 1994; Duclos, Esteban, and Ray 2004; Esteban, Grad́ın, and Ray 2007)

views polarization as the grouping of individuals into several (not necessarily two) clusters

where members of different groups are possibly antagonistic toward members of other clus-

ters: polarization is then the sum of all these antagonisms. The second strand, which more

closely informs our research, stems from work on the “hollowing out” of the “middle class”
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and views polarization, (synonymously bipolarization in this context) as the clustering of

individuals on opposite sides of the median of a metric scale (e.g, income), with greater dis-

tances from the median indicating higher levels of polarization. Here the notions of spread

and bipolarity are axiomatized, leading, in conjunction with functional form and normaliza-

tion restrictions, to indices that essentially measure the dissimilarity between an observed

distribution and a distribution concentrated at the median of the observed distribution. To

the best of our knowledge, statistical properties of these indices have not been explored.

See Anderson (2004), who uses stochastic dominance relations to characterize and test for

various forms of polarization.

There is also a related literature on bipolarization for ordinal scales (Allison and Foster

2004; Apouey 2007; Apouey and Silber 2013; Kobus 2015; Sarkar and Santra 2020). In

future work, we shall address this case; for further remarks, see the discussion.

In section two, axioms that we want an index of polarization to satisfy are set forth. To

measure the distance between an observed distribution of opinion and a maximally polarized

distribution, we propose using the p-Wasserstein distance (a measure of the distance between

two probability distributions defined for p ≥ 1) and show it is consistent with our axioms. We

also show that commonly used measures such as the variance and Sarle’s sample bimodality

coefficent are incompatible with one or more of the axioms. In section three, for p ∈ {1, 2},

the estimated p-Wasserstein index is used to evaluate bipolarization among 11 countries in

attitudes toward mandatory COVID-19 vaccination. The US and UK are the most polarized

countries, China, India and France the least, while Brazil, Australia, Colombia, Canada, Italy

and Spain are intermediate. Section four concludes. The appendix describes the statistical

theory on which our interval estimates of polarization are based. An R package (WBI:

Wasserstein Bipolarization Index) was developed to carry out the computations.
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2 Bipolarization: A New Measure

We consider responses X, with associated probability measure νX , to opinion item I mea-

sured on a metric scale with compact support on S ⊆ [ℓ, L] ⊂ R1. We propose five axioms,

two of which formalize the notion that bipolarization increases as the spread and clustering

of responses on either side of a central point c increase. Our treatment is closely related to

that of Foster and Wolfson (2010) and Wang and Tsui (2000), whose indices measure the

dissimilarity between νX and a measure concentrated at the median m(νX) of νX . In con-

trast, our index measures the distance of νX , with center c (not necessarily equal to m(νX))

from a maximally separated measure ξ(νX ,c,γ) concentrated at the lower and upper poles ℓ

and L.

Definition. The Maximally Separated Measure. For X ∈ [ℓ, L], with probability

measure νX , the maximally separated measure ξ(νX ,c,γ), with center c ∈ (ℓ, L), assigns all

probability to the points ℓ and L as follows: ξ(νX ,c,γ)(ℓ) = νX [ℓ, c) + γνX(c), ξ(νX ,c,γ)(L) =

1− ξ(νX ,c,γ)(ℓ), where γ ∈ [0, 1].

For the case νX(c) = 0, for any γ, the maximally separated measure results from trans-

ferring all the mass of νX to the left of center to ℓ and all the mass to the right of center to

L. When νX(c) > 0, the mass to the left (right) of c is transferred to ℓ (L), and a proportion

γ, specified by the researcher, of the mass at the center is transferred to ℓ, the remainder

to L. If c is chosen to correspond to a quantile q of νX , γ is chosen so that the maximally

separated measure places mass q on ℓ and mass 1− q on L.

In public opinion research the variance is often used to measure bipolarization, in which

case the center is the mean. Substantively motivated choices are also possible. For items
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where a point on the scale represents a neutral position, a researcher might want to choose

this point as a center. Public opinion researchers widely agree that the maximum amount of

bipolarization occurs when half the responses to an item are clustered at the lower endpoint,

the other half clustered at the upper endpoint (Bauer 2019). This implies c is the median.

The median also figures prominently in the political science literature, where the “average

citizen” often refers to the median voter (Gilens and Page 2014; Downs 1957), and the

median position historically indicates a “central tendency among voters” (Kim and Fording

2003). Similarly, in the economic literature on bipolarization, motivated by concerns over

the “hollowing out of the middle class, the median income represents the center of this class.

It is important to understand the empirical implications of different choices of the center.

If the center is chosen to correspond to a quantile q, i.e., the center of νX is c(q), ξ(νX ,c(q),γ(q))

depends only on νX and q. But if c is chosen in some other fashion, e.g., as the mean or

some point representing a neutral position, ξ(νX ,c,γ) depends on all three parameters.

In section 2.1, we propose five axioms we want our index of bipolarization to satisfy.

In section 2.2, we show that measures of polarization commonly used in the literature on

ideological divergence are incompatible with one or more of these axioms. In section 2.3, we

propose a p-Wasserstein measure of bipolarization and prove it is consistent with the five

axioms.

2.1 Axioms

Axioms 1 and 2 impose invariance conditions on a bipolarization index P that facilitate

comparison across populations and scales.

Axiom A1. Let X be a random variable with probability measure νX and Y a random
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variable with probability measure νY . Then, if νX = νY , P (νX , ξ(νX ,c,γ)) = P (νY , ξ(νX ,c,γ))

for any choice of c and γ.

Second, the origin ℓ and maximum L of items measuring public opinion are arbitrary. For

example, the NES feeling thermometer items range from “very cold or unfavorable feeling”

(ℓ = 0) to “very warm or favorable feeling” (L = 100); political ideology is often assessed

on a 10 or 11 point scale running from “left” to “right” (Bauer et al. 2017). To facilitate

interpretation and enable comparison of responses to one or more items measured on different

scales, e.g., the same question asked in different surveys, or to ask whether attitudes toward

gun control are more polarized than attitudes toward abortion, we require P to be translation

invariant and homogeneous of degree 1.

Axiom A2. Let X ∈ [ℓ, L] denote the response to item I in population P . Let Y =

ℓY + β(X − ℓ) ∈ [ℓY , LY ], β = LY −ℓY
L−ℓ

. Then P (νY , ξ(νY ,ℓY +β(c−ℓ),γ)) = βP (νX , ξ(νX ,c,γ)).

Next, as in the economic literature on bipolarization (Foster and Wolfson 2010, Wang

and Tsui 2000, Esteban and Ray 2012) of income, we formalize the notions of spread and

clustering that are also commonly identified in the literature on ideological divergence as

features of polarization. Motivated by earlier work on the “hollowing out of the middle

class”, Foster and Wolfson (2010) characterize increased spread as follows: for responses X

and Y measured in the same way, with probability measures νX and νY respectively, and

common median m(νX) = m(νY ) = m, νY is more polarized than νX if the distribution

function FY is stochastically higher than FX to the left of m and FX is stochastically higher

than FY to the right of m. The intuition for this definition is that movements from the

left (right) of the median further left (right) increase polarization: below we characterize
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increased spread in terms of such movements.

Definition. Left spread. νY is a left spread of νX about c if νY (I) = νX(I) for every sub-

interval I of (c, L], and there exists x1 ∈ [ℓ, c] such that νY (I) ≥ νX(I) for every sub-interval

I of [ℓ, x1) and νY (I) ≤ νX(I) for every sub-interval I of (x1, c]. A left spread about c is said

to be restricted if νY (c) ≥ (1 − γ)νX(c). Right Spread. νY is a right spread of νX about

c if νY (I) = νX(I) for every sub-interval I of [ℓ, c), and there exists x1 ∈ [c, L] such that

νY (I) ≤ νX(I) for every sub-interval I of [c, x1) and νY (I) ≥ νX(I) for every sub-interval I

of (x1, L]. A right spread about c is said to be restricted if νY (c) ≥ γνX(c).

The definitions above include the case of a null spread νX = νY , in which case x1 can

be any value in [ℓ, c] for a left spread about c, any value in [c, L] for a right spread about

c. For a non-null left spread about c, with x1 ∈ (ℓ, c), either mass is transferred from (x1, c]

to [ℓ, x1] or from [x1, c] to [ℓ, x1); if x1 = ℓ, x1 receives a transfer of mass from (ℓ, c], and if

x1 = c, mass is sent from x1 toward ℓ. Similarly, for a non-null right spread about c, with

x1 ∈ (c, L), either mass is transferred from [c, x1] to (x1, L] or from [c, x1) to [x1, L]; if x1 = c,

x1 sends mass toward L, and if x1 = L, x1 receives mass from [c, L).

Axiom A3. If νY is a restricted left (restricted right) spread of νX about c, P (νY , ξ(νX ,c,γ)) ≤

P (νX , ξ(νX ,c,γ)).

The restriction νY (c) ≥ (1−γ)νX(c) on a left spread about c ensures that at most γνX(c)

probability mass is moved from c toward ℓ; otherwise, it would be necessary to transfer some

mass in [ℓ, c) to c in order to attain the distribution corresponding to the maximally separated

measure. Similarly, the restriction νY (c) ≥ γνX(c) on a right spread about c ensures that at
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most (1− γ)νX(c) probability mass is moved from c toward L.

A second feature of bipolarization is clustering: moving masses on the left (right) of center

closer together should increase polarization. But this may also increase spread. Consider

the case of a discrete distribution νX , where νX(x1) = p1 > 0, x1 < x2 ≤ c, νX(x2) = p2 > 0.

A new measure νY is created by moving 1) mass p∗2 < p2 from x2 to x2 − δ and 2) mass

p∗1 < p1 from x1 to x1+η, where x1 < x1+η ≤ x2− δ < x2. Clearly, move 1 increases spread

and move 2 decreases spread, and p∗1, p
∗
2, δ, and η may be chosen so that the net spread

either increases or decreases. To capture changes in clustering independently of spread,

these quantities should be chosen so that the net change in spread is 0, i.e., the mean value

E(Y ) associated with νY equals the mean value E(X) associated with νX . To formalize

this requirement, we first define a “mean preserving merge”, then adapt this to the case

of clustering on either side of c. Our definition is adapted from the definition of a mean

preserving spread in Machina and Pratt (1997; 105-106), who generalized the definition of a

mean preserving spread in Rothschild and Stiglitz (1970).

Definition. Mean preserving merge. Let νX and νY be probability distributions on [ℓ, L]

with common mean E(X) = E(Y ). We say νY is obtained from νX by a mean preserving

merge (equivalently, νX is obtained from νY by a mean preserving spread) if there exist values

x1 ≤ x2 such that : a) νY (I) ≤ νX(I) for every sub-interval I of [ℓ, x1), b) νY (I) ≥ νX(I) for

every sub-interval I of (x1, x2), c) νY (I) ≤ νX(I) for every sub-interval I of (x2, L].

The case x1 = x2 occurs for a null merge νX = νY or if mass is sent from [ℓ, x1) and

(x1, L] to x1. The point x1 can transfer probability to or from νX(x1, x2) and the point x2

can transfer probability to or from νX(x2, L]. The Pigou-Dalton transfer, used by Wang

and Tsui (2002) to characterize clustering, whereby an individual with income x1 > x0
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transfers amount λ < x1 − x0 to the individual with income x0, is a special case of the mean

preserving merge. We now adapt the definition above to characterize clustering, in which

masses “below” or “above” c are moved closer together.

Definition. Left Merge. Let νY (I) = νX(I) for every sub-interval I of (c, L]. If νY is a

mean preserving merge of νX with x2 ≤ c, we say νY is a left mean preserving merge about

c. We say a left mean preserving merge about c is restricted if νY (c) ≥ (1− γ)νX(c). Right

Merge. Let νY (I) = νX(I) for every sub-interval I of [ℓ, c). If νY is a mean preserving

merge of νX with x1 ≥ c, we say νY is a right mean preserving merge about c. We say a

right mean preserving merge about c is restricted if νY (c) ≥ γνX(c).

Axiom A4. If νY is obtained from νX by a restricted left mean preserving merge about c

or a restricted right mean preserving merge about c, P (νY , ξ(νX ,c,γ)) ≤ P (νX , ξ(νX ,c,γ)).

Our goal is to develop an index that measures the dissimilarity between νX and its max-

imally separated counterpart ξ(νX ,c,γ) in which the mass to the “left” of center is transferred

to l and mass to the “right” to L. We require our measure to be a distance:

Axiom A5. For any two measures νX and νY , P (νX , νY ) is a distance.

2.2 Polarization Indices in Public Opinion Research: Variance and

Bimodality

Public opinion researchers typically use either the variance or Sarle’s sample bimodality

coefficient to measure polarization, interpreting increases in these measures as evidence of

increasing polarization. But neither of these measures are consistent with the axioms we
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have set forth. First, recall that a mean preserving merge is the reverse of a mean preserving

spread, and it is well known that a mean preserving spread increases the variance. There-

fore a mean preserving merge, i.e., increased clustering, reduces variance: thus, using the

variance as a measure of polarization can lead to the inference, in conflict with Axiom A4,

that bipolarization increases as clustering decreases. Second, consider Sarle’s finite sample

bimodality coefficient (Lelkes 2016):

b =
g2 + 1

k + 3(n−1)2

(n−2)(n−3)

, (1)

where g = m3

s3
is the sample skewness, k = m4

s4
− 3 is the sample excess kurtosis, m3 and m4

are the sample third and fourth central moments, and s is the sample standard deviation.

Clearly, Axiom A1 is violated, as two samples with different sizes and the same values of

k and g yield different values of b. While this is inconsequential for “large” n, consider

next two samples of size n with observed probability measures νX = 0.5 · δ0.4 + 0.5 · δ0.6 and

νY = 0.5 ·δ0.1+0.5 ·δ0.9 on [0, 1], where δx denotes a Dirac measure with mass 1 at x. Clearly,

νY exhibits increased spread compared to νX , but g and k are equal, and b will suggest, at

least in large samples, that νX and νY are equally polarized, violating Axiom A3.

2.3 p-Wasserstein measure of polarization

We propose to measure the distance between νX and ξ(νX ,c,γ) using the p-Wasserstein distance,

and we show that axioms A1-A5 are consistent with this choice. Our definition is adapted

from Villani (2009):

Definition. p-Wasserstein distance. Let (X , d) be a Polish metric space, and let p ∈
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[1,∞). For any two probability measures νX , νY on X , the Wasserstein distance of order p

is defined by

Wp(νX , νY ) =

(
inf

π∈Π(νX ,νY )

∫
X
d(x, y)pdπ(x, y)

) 1
p

, (2)

where Π(νX , νY ) is the set of all joint probability measures on X ×X with marginals νX and

νY , respectively.

For a given metric d, (2) is the minimum cost of “movement” needed to transform the

distribution νX into νY or νY into νX (Solomon 2018). Here we take d(x, y) = |y − x|.

Our choice of the Wasserstein distance is motivated by it capacity to capture “key ge-

ometric properties of the underlying ground space” that other statistical distances do not

(Peyré and Cuturi 2019). Consider Figure 1 where νX is comprised of masses A and B, with

c equal to the median m(νX), and denote the most polarized distribution, with masses .5

at ℓ and L, ξpol. Let νY be obtained from νX by shifting B k units to the right (a right

spread) to B′. Intuitively, νY exhibits greater polarization than νX : further, to satisfy axiom

A3 our measure D(·, ·) must satisfy D(νY , ξpol) < D(νX , ξpol), as will be the case using the

p-Wasserstein distance. However, other commonly used distances, such as the total variation

distance between probability measures νX and νY (DTV(νX , νY ) := supS⊂X |νX(S)−νY (S)|),

and the Hellinger distance (DH(νX , νY ) :=
1
2

∫
X (

√
νX(dx)−

√
νY (dx))

2) will not discriminate

between these cases because neither νX nor νY share any points of common support with

ξpol: nor do these distances satisfy Axioms A2-A4. And the Kullback-Leibler (KL) diver-

gence (DKL(νX , νY ) :=
∫
X log

(
νX(dx)
νY (dx)

)
νX(dx)), another popular measure of the dissimilarity

between distributions, albeit not a distance, is not applicable, as νX (νY ) and ξpol do not

share a common support.
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ℓ Lc c+ k

A B B′

Figure 1: νX consists of masses A and B, and νY consists of masses A and B′, where the

mass B′ results from translating the mass B k units to the right. νY is more polarized than

νX .

Calculating the Wasserstein distance requires finding the optimal coupling between two

measures that minimizes the cost of transport. Suppose for the moment νX(c) = 0. It seems

intuitively obvious that the optimal coupling πopt between νX and ξ(νX ,c,0) with d(x, y) =

|y − x| moves mass to the left of c further left to ℓ and mass to the right of c further right

to L. Any other coupling π ̸= πopt will map at least some mass ϵ > 0 from the left of

c, say from x ∈ [ℓ, c), to L and the same amount of mass from the right of c, say from

x′ ∈ (c, 1], to ℓ. Consider now the case p = 1: the distance traveled by the ϵ masses increases

from (L − x′) + (x − ℓ) under πopt to (L − x′) + 2(x′ − x) + (x − ℓ) under π, and the cost

increases accordingly. We establish this claim more generally for the p-Wasserstein distance

in Proposition 1:

Proposition 1. Let νX , with center c, be a probability measure defined on X = [ℓ, L],

and let ξ(νX ,c,γ) denote the corresponding maximum separation measure. Then, the optimal

p-Wasserstein coupling π∗ maps mass νX [ℓ, c) + γνX(c) to ℓ, mass 1−{νX [ℓ, c) + γνX(c)} to

L.

Proof. Let X denote the random variable with associated measure νX and distribution

function F , and let Y denote a random variable with probability measure ξ(νX ,c,γ) and dis-
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tribution function G. From Theorem 2.1 in Thorpe (2018), the optimal coupling πopt has

c.d.f. Hopt(x, y) = min(F (x), G(y)). We want to show that H∗ = Hopt where H
∗ is the c.d.f.

associated with π∗.

To derive H∗, we need only consider H∗(x, 0) and H∗(x, 1) since supp(Y ) = {0, 1} and

H∗(x, y) = H∗(x, 0), y ∈ [0, 1):

H∗(x, 0) = Pr(X ≤ x, Y = 0)

= Pr(Y = 0 | X ≤ x) Pr(X ≤ x)

=


Pr(Y = 0 | X ≤ x) Pr(X ≤ x), x < c

Pr(Y = 0 | X < c) Pr(X < c) + Pr(Y = 0 | X = c) Pr(X = c), x ≥ c

=


F (x), x < c

F (c−) + γνX(c), x ≥ c;

H∗(x, 1) = Pr(X ≤ x, Y ≤ 1)

= Pr(Y ≤ 1 | X ≤ x) Pr(X ≤ x)

= F (x).

Similarly, as supp(Y ) = {0, 1}, forHopt, we only need to considerHopt(x, 0) andHopt(x, 1).

Since G(y) = F (c−) + γνX(c) for y ∈ [0, 1) and G(y) = 1 for y = 1,

Hopt(x, 0) = min(F (x), G(0)) = min(F (x), F (c−) + γνX(c))

=


F (x), x < c

F (c−) + γνX(c), x ≥ c

Hopt(x, y) = Hopt(x, 0), if y ∈ [0, 1),
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Hopt(x, 1) = min(F (x), G(1)) = F (x). □

Substantively, the optimal coupling πopt, by moving people left (right) of c to the left

(right) extreme, captures the idea of public opinion change by “movements” of individuals

across a “spatial” spectrum of political ideology (Zaller 1992; Downs 1957), inducing a

state of polarization as people move “away from the center toward the extremes” (Fiorina

and Abrams 2006), with “liberals (conservatives) gravitating more reliably to the liberal

(conservative) position” (Zaller 1992 p.102).

Next, we show that the Wasserstein distance satisfies axioms A1-A5.

Proposition 2. Wp(νX , ξ(νX ,c,γ)) satisfies axioms A1-A5.

Proof. Axioms A1 and A5 are satisfied as (2) is a distance between probability distributions.

Axiom A2 follows from the definition of the Wasserstein distance with d(x, y) = |y−x|: when

X∗ = a + bX and Y ∗ = a + bY for a, b ∈ R, Wp(νX∗ , νY ∗) = |b|Wp(νX , νY ). It remains only

to show that Axioms A3 and A4 are satisfied. Because Axiom A2 is satisfied, we proceed,

without loss of generality, taking [ℓ, L] = [0, 1].

To prove Axiom A3 is satisfied, consider first a restricted left spread about c:

W p
p (νX , ξ(νX ,c,γ))−W p

p (νY , ξ(νX ,c,γ))

=

∫
[0,x1)

xpdνX −
∫
[0,x1)

xpdνY + xp
1(νX(x1)− νY (x1)) +

∫
(x1,c]

xpdνX −
∫
(x1,c]

xpdνY

≥ xp
1[(νX [0, x1))− νY [0, x1)) + (νX(x1)− νY (x1)) + (νX(x1, c]− νY (x1, c])]

= 0, (3)
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The case of a restricted right spread about c is proved in an analogous fashion.

That Axiom A4 is satisfied follows from Theorem 3 in Machina and Pratt (1997), which

states that the conditions a) νZ is obtained from νX by a sequence of mean preserving spreads

and b)
∫
[0,1]

u(x)dνZ ≤
∫
[0,1]

u(x)dνX for every concave function u(·) are equivalent. For a

restricted left mean preserving merge about c

W p
p (νX , ξ(νX ,c,γ))−W p

p (νY , ξ(νX ,c,γ)) =

∫
[0,c]

xpdνX −
∫
[0,c]

xpdνY . (4)

For p = 1, the definition of a mean preserving merge implies (4)= 0. For p > 1 the

result follows from the definition of a restricted left mean preserving merge about c and the

convexity of xp on [0, 1]. For a restricted right mean preserving merge about c, the result

follows similarly from the definition and the convexity of (1− x)p on [0, 1]. □

3 A Cross-Country Comparison of Attitudes toward

Government Mandates on Vaccination for COVID-

19

The COVID-19 pandemic prompted unprecedented governmental actions such as lockdowns,

international travel restrictions, and vaccination mandates that stirred much public debate

within and across countries. Debates about the safety and efficacy of vaccines, the prioritiza-

tion of groups during rollout, and, especially, vaccination mandates, were often contentious,

and the substance of these disagreements varied across countries. For instance, Democrats

and Republicans clashed over vaccination in the US, led by conflicting messages from Biden

and Trump (Bolsen and Palm 2022). And in Brazil, where many citizens strongly supported

vaccination, followers of (at the time) President Bolsonaro, a COVID-19 denier, displayed sig-
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nificantly lower support (Gramacho and Turgeon 2021). On the other hand, Chinese opinions

reflected “stabilized public sentiment”, possibly due to timely government responses (Han

et al. 2020).

To assess the variation in public opinion on vaccine allocation policies, Duch et al. (2021)

conducted the Oxford COVID-19 Vaccine Preference and Opinion Survey (CANDOUR), an

online survey of 15,536 adults 18 years of age or more, administered between November 2020

and January 2021 in 13 countries, with 1000 to 1500 respondents from each country. In Chile

and Uganda, excluded from our analysis, respondents were recruited through Facebook. In

the remaining countries (Australia, Brazil, Canada, China, Colombia, France, India, Italy,

Spain, the UK, and the US) sampling was conducted by the survey research firm Respondi

using respondents from their online panels. Except for Canada and Spain, where demo-

graphic and spatial characteristics of sample respondents were close to population totals,

post-stratification weights calculated through raking were used to adjust for remaining im-

balances between sample and population marginals on region, age, sex and education (Duch

et al. 2021; see online appendix).

We apply our index to a question from the survey that asked respondents how much they

agree with the following statement: “The government should make the COVID-19 vaccine

mandatory for everybody.” Responses were recorded as integers on a 0 (disagree) to 100

(agree) visual analogue scale (VAS). Weighted histograms of responses from each country

are presented in Figure 2.

3.1 Rescaling Wp(νX , ξ(νX ,c,γ)) to [0, 1]: The index Ip(νX , ξ(νX ,c,γ)).

To facilitate interpretability, we rescale the p-Wasserstein distance Wp(νX , ξ(νX ,c,γ)) to lie in

[0, 1] so that the lowest (highest) level of polarization corresponds to a 0 (1) value of the
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index. To do so we derive the upper and lower bounds of W p
p (νX , ξ(νX ,c,γ)). The lower bound

for W p
p (νX , ξ(νX ,c,γ)) is obviously 0, which occurs if and only if νX = ξ(νX ,c,γ), corresponding

to an index value Ip(νX , ξ(νX ,c,γ)) = 1. As the upper bound depends on [ℓ, L] (see Axiom A2)

we assume X has already been transformed to lie in [0, 1].

Proposition 3. Let Q(q) = inf{x : νX [0, x] ≥ q}, q ∈ [0, 1], denote the quantile function

associated with νX , and let ξ(νX ,c,γ) ≡ ξq = q · δ0 + (1− q) · δ1, where δx is a Dirac measure

with mass 1 on x. Then,

Wp(νX , ξq) ≤ Wp(δQ(q), ξq) ≤ max(q
1
p , (1− q)

1
p ).

Proof:

W p
p (νX , ξq)

=

∫
[0,Q(q))

xpdνX + γνX(Q) ·Q(q)p +

∫
(Q(q),1]

(1− x)pdνX + (1− γ)νX(Q) · [1−Q(q)]p

≤
∫
[0,Q(q))

Q(q)pdνX + γνX(Q) ·Q(q)p +

∫
(Q(q),1]

[1−Q(q)]pdνX + (1− γ)νX(Q) · [1−Q(q)]p

= q · [Q(q)]p + (1− q) · [1−Q(q)]p = W p
p (δQ(q), ξq)

≤ max(q, 1− q) = max[W p
p (δ1, ξq),W

p
p (δ0, ξq)]. □

Thus, we define the index Ip(νX , ξ(νX ,c,γ)) = 1− [max(q
1
p , (1− q)

1
p )]−1Wp(νX , ξ(νX ,c,γ)). If

q < .5 (q > .5) the index takes the minimum value of 0 when W p
p (νX , ξq) = W p

p (δ0, ξq) = 1−q

(W p
p (νX , ξq) = W p

p (δ1, ξq) = q), i.e., there is a consensus of opinion at 0 (1). Whereas

p′ > p ≥ 1 implies Wp′ ≥ Wp, this does not hold for the index Ip, due to the rescaling of Wp.

Now, for any value of q ∈ [0, 1], let Q∗
p(q) = argmin{0≤Q(q)≤1}Wp(δQ(q), ξq) denote the

value of Q(q) ∈ [0, 1] that maximizes Ip(δQ(q), ξq). It follows from above that Q∗
1(q) = 1 if

q < .5, 0 if q > .5 and {0, 1} if q = .5. For p > 1, Q∗
p(q) =

(
1−q
q

)1/(p−1)
/[1 +

(
1−q
q

)1/(p−1)
].
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Further, for p ≥ 1, Wp(δx, ξq) increases monotonically as |x − Q∗
p(q)| increases. Thus, in

contrast to several indices of income bipolarization that take the median m(νX) as the

center and result in a value of 0 when the distribution is concentrated on m(νX), no matter

where this median is located (Foster and Wolfson 2010; Wang and Tsui 2002), Ip(δQ(q), ξq)

is sensitive to the location where mass is concentrated, with location at one or both ends

of the scale (depending on the choice of q) evidencing less polarization than locations at

intermediate points on the scale. These properties of our index allow us to capture important

features of opinion polarization that indices insensitive to the location of points where mass

is concentrated miss, for example the observation that opinions located at either end of the

opinion spectrum are more stable and difficult to change than opinions that are less extreme

(Druckman and Leeper 2012; Zaller 1992).

3.2 Results

As previously noted, public opinion researchers typically regard the most polarized state as

that in which half of the responses are located at ℓ, the other half at L. This implies a

center c equal to the median m(νX), where any choice of c with P (X ≤ m(νX)) ≥ 0.5 and

P (X ≥ m(νX)) ≤ 0.5 will result in the same optimal coupling, with half of the responses

at ℓ and half at L. After rescaling the responses to lie in the unit interval [0, 1], we define

ξpol = 0.5 · δ0+0.5 · δ1 and estimate the index Ip(νX , ξpol) = 1− 21/p ·Wp(νX , ξpol). Following

Duch et al. (2021), we treat the responses as measurements on a metric scale: if a researcher

does not believe a difference of x1−x2 = ∆ units on the scale represents the same amount of

opinion as a difference on the scale of x3−x4 = ∆ units, she can consider applying a monotone

transformation to the original values so that the transformed values more nearly meet this

assumption. Second, the asymptotic 95% confidence intervals we report are obtained under
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the assumption of simple random sampling (Sommerfeld 2017); to compute these, the R

package WPI (Wasserstein Polarization Index) was developed.

Broad consensus Somewhat polarized
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0.5

0.6
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Scaled 1− and 2−Wasserstein Polarization Index for 11 Countries

Figure 3: p = 1 and p = 2 Wasserstein polarization index point estimates of 11 countries
in increasing order for p = 2. Bars indicate 95% confidence intervals, and the three colored
sections correspond to the visual assessment from Duch et al.

In their analysis of attitudes toward mandatory vaccination, Duch et al. (2021) do not

define or measure polarization, using visual inspection of the histograms in Figure 2 to

classify eight of the 11 countries into three groups: “highly polarized” (US and UK), where

the majority of respondents are “either strongly opposed or strongly supportive”, “somewhat

polarized” (Australia, Brazil, and Colombia), where there is “little middle ground”, and

“broad consensus” (China, India, and France). Despite the lack of rigor, their grouping is

roughly congruent with the ordering of our estimates I1(ν̂X , ξpol) and I2(ν̂X , ξpol). However,

our estimates are based on an explicit notion of polarization and allow for more refined,

quantitative comparisons that take uncertainty into consideration. For instance, within the

“somewhat polarized” group, only Australia is significantly less polarized than the “highly

polarized” group for p = 1. More generally, the eight countries that do not belong to the
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“broad consensus” group cannot be readily clustered into groups without making somewhat

arbitrary distinctions. We also provide point estimates and confidence intervals for Canada,

Italy, and Spain, three countries that Duch et al. (2021) do not attempt to classify.

Though our country ordering is essentially the same for both p = 1 and p = 2, there

are several differences, due largely to the fact that I1 is insensitive to clustering. While

China, India and France are the least polarized countries, France appears less polarized than

China for p = 2, but more polarized for p = 1. All else equal, if France and China had

equal amounts of clustering around 0 and 0.75, then the distribution clustered around 0.75

would display more polarization for p = 2 but not for p = 1. Furthermore, France does not

exhibit much clustering except near 0, whereas China exhibits stronger clustering on both

sides of the median. This also increases polarization for p = 2, but not p = 1. A similar

reversal occurs between Brazil and Australia, but here, for both p = 1 and for p = 2, the

95% confidence intervals overlap.

Broad consensus Somewhat polarized
Highly

polarized

0.00

0.25

0.50

0.75

1.00

France India China Brazil Australia Colombia Canada Italy Spain UK US
Country

In
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x

Bimodality

p=1

p=2

Variance

Comparison of p=1, 2 Indices, Variance, and Bimodality Coefficient

Figure 4: Sarle’s sample bimodality coefficient, rescaled variance, and p = 1 and p = 2
Wasserstein polarization index point estimates of 11 countries in increasing order for p = 2.
The three colored sections correspond to the visual assessment from Duch et al.
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In section 2.2 we showed that several widely used measures of polarization, most notably

the variance V and Sarle’s sample bimodality coefficient b, do not satisfy all our axioms.

Using the estimates in Figure 4, we compare the estimated variance V̂ (ν̂X) and the bimodality

coefficient b(ν̂X) with I1(ν̂X , ξpol) and I2(ν̂X , ξpol), also with the conclusions reached by Duch

et al. Because the variance on [0, 1] takes on a maximum value of .25, to facilitate direct

comparison with our indices, we rescaled the variance to take on a maximum value of 1.

The estimated variance V̂ (ν̂X) tracks the index I1(ν̂X , ξpol) well for our three least polar-

ized countries. However, by this measure, Brazil and Colombia appear to be more polarized

than either the UK or the US, which is not consistent with either our estimates I1(ν̂X , ξpol)

and I2(ν̂X , ξpol) or the observations in Duch et al. (2021). In addition, V̂ (ν̂X) is smaller

in China than in India, and smaller in India than in France, whereas I2(ν̂X , ξpol) is larger

in China than in India, and larger in India than in France; the reversal between the two

orderings is consistent with the fact that all else equal, mean preserving clustering decreases

V̂ (ν̂X) and increases I2(ν̂X , ξpol),

Sarle’s sample bimodality coefficient already lies in [0, 1] and does not require rescaling.

Figure 4 demonstrates that the coefficient largely does not track the other measures. For

instance, France has the second highest value of b(ν̂X), but every other measure suggests

France is one of the least polarized nations. In addition, by this measure, France and

the three “somewhat polarized” countries appear to be more polarized than the “highly

polarized” countries identified by our measures and by Duch et al. Further, as is apparent

from inspection of the histograms in Figure 2, whereas the distributions in Italy, the U.S,

the U.K, and Spain appear to exhibit some bimodality, the three countries with the highest

bimodality coefficients (Brazil, France, and Colombia) exhibit clustering at one of the poles,

but little clustering at other parts of the distribution. It seems reasonable to conclude that
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b is not measuring bimodality here.

4 Discussion

To study bipolarization, public opinion researchers use ad hoc measures that fail to align

with their notions of this concept. This paper sets forth key properties an index of bipolar-

ization should satisy and proposes a p-Wasserstein index consistent with these properties.

To illustrate the index, we re-analyze an item from a study by Duch et al. (2021) that asked

respondents in a number of countries if they thought vaccination against COVID-19 should

be mandatory in their country. Among the 11 countries considered, China, India and France

are the least polarized, while the UK and US are the most polarized.

Several extensions of our approach would be useful. First, we compared interval esti-

mates of the p-Wasserstein index in different countries. More common are studies that track

the distribution of an item or items over time within a country to assess whether or not

polarization has increased during the period under investigation. (DiMaggio, Evans, and

Bryson 1996; Fiorina and Abrams 2008; Mouw and Sobel 2001; Lelkes 2016). While the

p-Wasserstein index can also be applied directly in this context, it would also be useful to

develop frameworks for modeling temporal trends in the index and for testing hypotheses

about differences in index values between groups and/or over time.

Second, many survey items are measured on ordinal scales with 7 or fewer categories,

and most researchers treat responses to such scales as cardinal. While it is trivial to extend

our index to the ordinal case by using a suitable cost metric to measure the difficulty of

moving between different categories, this begs the question of how to choose such a metric.

We are currently studying several approaches: clearly, this requires incorporating additional
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information and assumptions.

Third, public opinion researchers often want to aggregate the results from different opin-

ion items to form a summary judgement. To study ideological divergence, some researchers

do not attempt to mathematically combine the responses from different items into a com-

posite measure: for example, Fiorina (2017, p. 28) argued, on the basis of visual inspection

of graphs of five NES items asked of respondents in 1984 and 2016, that “the distribu-

tions in 2016 maintain the same generally centrist shape as they did in 1984.” In contrast,

Hill and Tausanovitch (2015) used an item response model with 67 NES items to estimate

respondent’s positions on a unidimensional “ideological” scale. To assess whether or not

polarization had increased over time, they compared the variance of the distributions of

positions at the different time points. In future work, we intend to extend our approach to

develop a principled polarization index based on multiple items.

We also believe the Wasserstein distance can be used to construct better measures of

other types of polarization recognized in the literature. More recently, political scientists

and others have called attention to increasing conflict among partisans of different parties,

and the quantification of partisan polarization has taken on great importance. Here, instead

of measuring polarization among the public at large by comparing the observed distribution

of responses on an item to a fixed distribution with all probability concentrated on the left

and role poles of the scale, as we have done, the aim is to compare the distribution of the

item among Republicans with the distribution of the item among Democrats. To measure

the so-called “partisan gap”, researchers often use the between group difference in means or

median on the item, using trends in these quantities to ascertain whether or not “partisan

polarization” has increased, decreased, or neither (Hill and Tausanovitch 2015, Enders 2021).

But it is easy to construct examples where such measures may be misleading: consider the
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case of a 0-100 interval scale where 50% of Republicans are located at 25 and 50% are

located at 75, and all Democrats at 50, in which case both medians and means of each of

the distributions are located at 50, leading to the conclusion that there is no “partisan gap”.

We believe the Wasserstein distance between the two distributions could be used to better

inform the issue of partisan polarization than the possibly misleading comparisons based on

means and/or medians.

To the best of our knowledge, ours is the first paper to use the theory of optimal transport

to develop a sociopolitical index. Whereas our index is defined as a comparison of a distribu-

tion νX to a prescribed distribution with mass concentrated on the minimum and maximum

scale values, the Wasserstein distance is frequently used to compare arbitrary distributions

νX and νY , and we advocated using it to compare the distribution of Democrats and Repub-

licans on public opinion items. More generally in social research, where comparisons between

two groups are ubiquitous (e.g., educational attainments of Blacks and whites or males and

females) the disparity between groups is often operationalized as a difference in means or

medians of an outcome of interest; the Wasserstein distance, with its capacity to capture the

relative geometry between distributions, is able to detect dissimilarities between distribu-

tions that are missed by these cruder summaries. Thus, we believe the Wasserstein distance

has a potentially important role to play in social research for conceptualizing, measuring and

testing between group similarities and dissimilarities.
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Appendix: Computation and Inference

The p-Wasserstein distance between discrete measures νX and νY on a finite support X can

be expressed as:

[Wp(νX , νY )]
p = inf

π∈Π(νX ,νY )

∑
x,y∈X

dp(x, y)π(x, y),

where Π(νX , νY ) is the set of all joint probability measures with marginals νX and νY .

Let {xi}Mi=1 denote the support of νX and {yj}Nj=1 the support of νY . Expressing the two

measures as “superpositions” νX =
∑M

i=1 piδxi
and νY =

∑N
j=1 qjδyj (Solomon 2018), it is

evident that the p-Wasserstein distance is the solution to the linear program

min
π

∑
i,j

dp(xi, yj)πij

s.t.
∑
i

πij = qj,
∑
j

πij = pi, πij ≥ 0.

The dual program is given by:

max
(v,w)∈RM×RN

M∑
i=1

vipi +
N∑
j=1

wjqj

s.t. vi + wj ≤ dp(xi, yj).

with dual variables v,w.

Using the dual, Sommerfeld (2017) derives the asymptotic distribution of the empirical

Wasserstein distance between ν̂n, the empirical measure of ν based on n observations, and a
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known measure ξ (Theorem 8(a)), from which asymptotic confidence intervals follow:

Assume ν, ξ on X satisfy the non-degeneracy condition:
∑

x∈A ν(x) ̸=
∑

y∈B ξ(y) for all

proper subsets A,B of X . Let v∗,w∗ denote a solution to the dual problem of Wp(ν̂n, ξ).

Then, an asymptotic (1− α)× 100% confidence interval for Wp(ν̂n, ξ) is given by

[
Wp(ν̂n, ξ)−

zα/2√
np

W 1−p
p (ν̂n, ξ)σ(ν̂n, ξ),Wp(ν̂n, ξ) +

zα/2√
np

W 1−p
p (ν̂n, ξ)σ(ν̂n, ξ)

]
,

where σ2(ν̂n, ξ) =
∑

x∈X v∗(x)2ν̂n(x) −
(∑

x∈X v∗(x)ν̂n(x)
)2
and zα/2 is the (1 − α/2)

quantile of the standard normal distribution. Thus, for our rescaled index Ip(ν̂n, ξ) =

1 − max(q1/p, (1 − q)1/p)−1 · Wp(ν̂n, ξ), an asymptotic (1 − α) × 100% confidence interval

is

[
1−max(q1/p, (1− q)1/p)

{
Wp(ν̂n, ξ) +

zα/2√
np

W 1−p
p (ν̂n, ξ)σ(ν̂n, ξ)

}
,

1−max(q1/p, (1− q)1/p)
{
Wp(ν̂n, ξ)−

zα/2√
np

W 1−p
p (ν̂n, ξ)σ(ν̂n, ξ)

}]
.

The code used to compute the confidence intervals in the empirical application is given

in the R package “WPI”: Wasserstein Polarization Index.
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